Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres.
نویسندگان
چکیده
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)(8-13) expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.
منابع مشابه
A phase-electron microscopic study of extraocular muscle dystrophy in the mouse.
The extraocular muscles of dystrophic mouse strain Re-129 dy/dy were studied in combined phase and electron microscopy. Changes in fiber morphology were found which are similar to those described in dystrophic human and mouse peripheral musculature, i.e., changes in fiber diameter, alteratiotxs in the cellular organelles, including mitochondria, sarcoplasmic reticulum, nuclei, sarcolemma, and l...
متن کاملOver-expression of BCL2 rescues muscle weakness in a mouse model of oculopharyngeal muscular dystrophy
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscular dystrophy caused by a polyalanine expansion mutation in the coding region of the poly-(A) binding protein nuclear 1 (PABPN1) gene. In unaffected individuals, (GCG)(6) encodes the first 6 alanines in a homopolymeric stretch of 10 alanines. In most patients, this (GCG)(6) repeat is expanded to (GCG)(8-13), leading to a stretch of ...
متن کاملChronic spinal muscular atrophy of facioscapulohumeral type.
Chronic spinal muscular atrophy of FSH type affecting a mother and her son and daughter is reported. The relevant literature is reviewed and the relation between this conditon and Kugelberg-Welander (K-W) disease is discussed. Chronic spinal muscular atrophy of FSH type is considered to be a different entity from the eponymous K-W disease. Each type of muscular dystrophy, e.g. limb-girdle, FSH,...
متن کاملAssociation of Limb-Girdle muscular dystrophy with multiple sclerosis: A case report
Background: The association of limb-girdle muscular dystrophy (LGMD) with other neurological disorders is uncommon. Case presentation: We report a 25-year-old female with LGMD who suffered from slowly progressive proximal muscular weakness and atrophy since she was 12 years of age. The patient recently presented with acute loss of left side visual acuity. After evaluation, findings were sugges...
متن کاملInvolvement of the ubiquitin-proteasome pathway and molecular chaperones in oculopharyngeal muscular dystrophy.
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant muscular dystrophy that results from small expansions of a polyalanine tract in the PABPN1 gene. Intranuclear inclusions are the pathological hallmark of OPMD. The mechanism by which protein aggregation in OPMD might relate to a toxic gain-of-function has so far remained elusive. Whether protein aggregates themselves a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 19 11 شماره
صفحات -
تاریخ انتشار 2010